
Titan Summit
8/17/2011	

PROGRESS TOWARDS ACCELERATING
CAM-SE ON HYBRID

MULTI-CORE SYSTEMS

Presented by: Rick Archibald

Applica'on	 Readiness	 Team	

Rick	 Archibald	 ORNL	

Jeff	 Larkin	 Cray	

Ilene	 Carpenter	 NREL	

Paulius	 Micikevicius	 NVIDIA	

MaGhew	 Norman	 ORNL	

ValenKne	 Anantharaj	 ORNL	

Center for Accelerated
Application Research

(CAAR)	

2

‘Climate and Ecosystems’, John Dunne, 16th Annual CESM Workshop, 2011.

3

4

‘New capabilities and new dynamical
cores in CAM’. Mark Taylor, 16th Annual
CESM Workshop, 2011.

5

6

Target Problem

•  1/8 degree CAM, using CAM-SE dynamical core and Mozart
tropospheric chemistry. Land model will be run on CPUs.

• Why is acceleration needed to “do” the problem?
–  When including all the tracers associated with Mozart atmospheric

chemistry, the simulation is too expensive to run at high resolution
on today’s systems.

• What unrealized parallelism needs to be exposed?
–  In many parts of the dynamics, parallelism needs to include levels

and chemical constituents.

7

Profile Generation
•  The science problem of interest could not be run at the time

the project started because Mozart chemistry depended on
using a latitude/longitude grid and CAM-SE uses a cubed-
sphere grid.

• A set of jobs that spanned the aspects of this problem were
run, which allowed us to make a performance model for the
target problem.

• Recently this limitation has been overcome and we can now
run the problem of interest. The new profile confirms that our
performance model directed us to work on the right part of
the code (tracer advection).

8

Projected Profile of Runtime

0	
2	
4	
6	
8	

10	
12	
14	
16	
18	
20	 Buffer	 packing	 for	 Boundary	 Exchange	

Euler	 Step	

Laplace	
Sphere	
Weak	

Ver'cal	 Remap	

%
 o

f R
un

tim
e

9

Kernels extracted

• Vertical remapping
• Euler_step + limiter2d_zero
•  Laplace_sphere_wk
• Small kernels from dynamics (gradient, divergence, vorticity

etc.), used by euler_step and laplace_sphere_wk
•  Tendency physics before coupling (for compiler analysis, not

run-able).
• Chemistry implicit solver (smaller than expected % of final

runtime, further development put on hold)

10

Method of acceleration

• CUDA
–  We primarily used PGI CUDA Fortran for HOMME kernels.

• Directives
–  Recent studies with the Cray compiler on the HOMME kernels

show that the compiler directive approach can provide as good or
better performance as manual tuning with CUDA Fortran.

•  Libraries
–  No significant math library use

11

Method of acceleration: Why?

–  CAM-SE dynamical core has the same loop and index patterns
appear repeatedly, which makes CUDA work tractable.

–  Mozart chemistry code developers are likely to accommodate
code changes. Both CUDA and directives will be explored. Implicit
solver code is generated by a pre-processor, so GPU-specific code
can be generated without affecting CPU version.

–  Physics code will need to accelerated using directives if this is to
be run on GPUs
•  to prevent version bifurcation, involves many routines written by many

different people who have no knowledge accelerators
•  profile for the physics is extremely flat
•  physics is less than 1% of target job so low priority now
•  Directives are the only method that potentially allow one to use GPUs without

causing unacceptable changes in the CPU base code.

12

Plan of work – what has been done?
•  Examination of code structure and data types.

•  Created test cases for profiling and performance model development.

•  Created macro-kernels for some of the most time consuming parts of the code to
enable people unfamiliar with CESM to assist with project.

•  Created low level kernels from CAM-SE, then moved up the call tree to higher level
kernels.

•  Optimized vertical remapping, which improved performance on CPU and enabled
use of the GPU.

•  Implemented asynchronous data transfers with standalone kernels. Determined that
overlapping data transfers with computation or leaving data on GPU is critical.

•  Explored doing packing/unpacking for boundary exchange on GPU. This is sub-
optimal.

•  Separated on-GPU boundary exchange (interior edges) from off-GPU boundary
exchange, to minimize data transfers back to CPU during tracer advection.

13

CPU code:!
Loop over elements!
 Loop over advected constituents (q)!
 Loop over j!
 Loop over i!
 Loops over levels !
 all computations from quadratic_spline and!
 quadratic_spline_monotone manually inlined!
!
GPU code:!
!
Transfer element-independent data to GPU!
Create chunks of 6 elements!
!
Decompose work into thread blocks:!
 tblock=dim3(nv,nv,6) – columns associated with 6 elements!
 tgrid=dim3(qsize,1,1) - each block has a different value of q!
!
Loop over chunks:!
 Copy data from element structure to local arrays!
 Transfer data to GPU!
 Call remap_Q_kernel<<<tgrid,tblock>>>(…)!
 Transfer results back to CPU!
 Copy data back to elem structure!
!
attributes(global) subroutine & !
 remap_Q_kernel(Qdp,hyai,hybi,ps_v,dpdn,ps0,dt)!
!
 i = threadIdx%x!
 j = threadIdx%y!
 ie = threadIdx%z!
 q = blockIdx%x!
!
 ! each thread has one column of points for one value of q!
 !
 Loops over levels!

 all computations from quadratic_splime and!
 quadratic_spline_monotone manually inlined!
!
end subroutine remap_Q_kernel

14

Vertical Remapping

•  The mass and momentum variables in CAM-SE are
conservatively remapped at the end of each time step
following Zerroukat 2005 and 2006.

• Computation for each column is independent of other
columns, which immediately offers parallelism for nv x nv x
qsize x nelem threads

• Each kernel launch has qsize thread blocks, and each
thread block is nv x nv x nelem threads

• Optimal memory access patterns – each group of nv x nv
threads accesses a contiguous memory region since level
data is contiguous for each element and tracer

15

Plan of work – what remains to be
done?
•  Continue to refine profiles as inefficient code is rewritten and work on

routines that take a significant percentage of the runtime.
•  Optimize on-GPU boundary exchange (pack and unpack).
•  Optimize buffers containing boundary data that need to go to CPU to

generate MPI messages.
•  Move up a level with GPU kernels to include data that can be left on

GPU using new boundary exchange methods.
•  Integrate GPU kernels into HOMME trunk (and via that, into CESM)

16

17

18

Summary
•  The community is moving towards high-resolution modeling

with atmospheric chemistry.
• We have demonstrated that such a run is dominated by

tracer advection.
• We have demonstrated that enough parallelism exists to run

tracer advection on the GPU.

Additional help from
Jim Rosinski, Mark Taylor, John Dennis, Kate Evans, Oscar

Hernandez, Jim Schwarzmeier, Tom Court, Abdulla Bataineh

